

Análise físico-química de cervejas puro malte de produção comercial, artesanal e caseira.

Ana Alice Cristofore Viana¹; Mirella Garcia Telles França²; Rafaela Teixeira Barradas³; Ryandro Campos Jóia⁴; Juliana Baptista Simões⁵; Roberto da Silva Lannes⁶

¹Discente do Curso Técnico Integrado em Química IFF- Campus Itaperuna;

Resumo

As cervejas normalmente são compostas por água, malte e lúpulo, podendo conter outros ingredientes em sua receita. Elas podem ser divididas em dois grupos: as lager (com baixa fermentação) e as ale (com alta fermentação). O Brasil é um dos maiores consumidores mundiais da bebida e a cada ano a produção de cervejas tanto artesanais como caseiras vêm crescendo e ganhando mercado. Sendo assim, este trabalho objetiva analisar as propriedades físico-químicas das cervejas puro malte tidas como cervejas de melhor qualidade para o consumo. Foram selecionadas três marcas diferente de cervejas do tipo puro malte, uma totalmente industrial, uma artesanal e outra caseira. Serão analisados densidade relativa, acidez, açúcar redutor em maltose, pH, extrato seco, grau de fermentação e grau sacarométrico de acordo com protocolo proposto pelo Instituto Adolfo Lutz (2008) e comparados com a Lei 6.871/2009. Até o momento, de acordo com as análises já obtidas, as cervejas artesanais se mostraram dentro dos padrões de produção para pH, extrato seco obtido pelo método da medida de massa. Já o valor de extrato seco obtido pelo método da conversão da densidade, encontra-se fora dos padrões, assim como a densidade e o teor alcoólico. Para as cervejas comerciais, tiveram pequenas divergências com a norma padrão de pH, teor alcoólico e densidade. Os valores de extrato seco estão dentro dos padrões nos dois métodos utilizados.

Palavras-Chave: Análise Físico-Química; Padrão; Cerveja.

Introdução

Faz-se presente nas tradições humanas desde eras primitivas as bebidas alcoólicas dentre as quais destacam-se as cervejas, cujo consumo data mais de 600 anos. Artigos arqueólogos apontam para o início de sua produção na Mesopotâmia, onde concentra-se grande parte dos indícios de produção desta bebida (FERREIRA & BENKA, 2014; GIORGI JÚNIOR, 2016).

A cerveja é uma bebida alcoólica carbonatada, originada através da fermentação de materiais como amido e principalmente cereais maltados como

²Discente do Curso Técnico Integrado em Química IFF- Campus Itaperuna;

³Discente do Curso Técnico Integrado em Química IFF- Campus Itaperuna;

⁴Discente do Curso Técnico Integrado em Química IFF- Campus Itaperuna;

Orientadora, Docente do Instituto Federal Fluminense- Campus Itaperuna Corientador, servidor Instituto Federal Fluminense- Campus Itaperuna julianabsf@gmail.com

Congresso de Interdisciplinaridade do Noroeste Fluminense

cevada e o trigo. Seu preparo inclui água como parte importante do processo e algumas receitas levam ainda lúpulo e fermento, além de outros temperos como frutas, ervas e algumas plantas.

A Produção e consumo de cervejas no Brasil é restrito a determinadas marcas do tipo lager pilsen, com pouca variedade em termos de sabores, coloração e amargor, como observa-se em outros países. Entretanto, com cerca de 11,6 bilhões de litro/ano, o Brasil encontra-se entre os maiores consumidores da bebida no mundo, com uma produção anual que vem crescendo gradativamente (MORI & MINELLA, 2012).

Através de análises físico-químicas será possível a verificação da qualidade na elaboração do produto de acordo com a normativa vigente, a identificação de possíveis fraudes na elaboração e no real valor econômico para comercialização das cervejas. O decreto de número 6.871 de 2009 especifica as padronizações para a produção e comercialização de bebidas no Brasil. Este decreto determina ainda os valores que as características físico-químicas devem seguir para atender ao padrão de qualidade (ALMEIDA e BELO, 2017).

Assim, objetiva-se analisar propriedades físico-químicas das cervejas puro malte de três marcas comercializadas no município de Itaperuna/RJ, sendo uma marca industrial, uma artesanal (semi-industrial) e uma caseira.

Metodologia ou Materiais e Métodos

Para determinação de todas as características físico-químicas das cervejas foram empregadas as metodologias descritas pelo Instituto Adolfo Lutz (2008). Todas as análises foram feitas em triplicatas. Para determinação de densidade e teor alcóolico, utilizou-se da metodologia de destilação simples seguido da medida da densidade em picnômetro. O teor alcoólico foi calculado pela conversão da densidade a 20°C. A acidez total foi obtida através da titulação dos ácidos utilizando uma solução padronizada Hidróxido de sódio, empregando fenolftaleína como indicador.

A determinação de extrato seco ou extrato real foi determinada por dois métodos. No primeiro, as amostras foram acondicionadas em cadinho de porcelanas em banho maria até a completa secura e determinada sua massa em balança analítica. No segundo, determinou-se a densidade do resíduo de destilação por conversão da densidade relativa a 20°C/20 °C e a porcentagem de extrato seco. Para determinação de pH utilizou-se o pHmetro calibrado. O grau sacarométrico, é o teor de açúcares existentes no mosto e é calculado pela equação a seguir.

GS= 1<u>00 x (Extrato seco + (2,0665 x teor alcóolico)</u> 100 + (1,065 x teor alcóolico)

A partir do grau sacarométrico pode se calcular o grau de fermentação, pela equação:

GF= 100 x (GS - Extrato)

Para determinação de açúcares redutores de maltose, empregou-se a titulometria de Lane-Eynonas, também conhecida Método de Fehling, que consiste na redução completa dos íons cúpricos do reagente de Fehling (uma solução de

Congresso de Interdisciplinaridade do Noroeste Fluminense

ácido tartárico com cobre alcalino) a óxido cuproso, causada pelos açúcares redutores.

Resultados e discussão

De acordo com as análises realizadas, até o presente momento, levando em consideração a normativa vigente, pode-se observar que os valores de pH obtidos (Tabela 1) da cerveja industrial escolhida estão fora do padrão (entre 2,0 e 4,2), ou seja, possuem uma acidez inferior a esperada. As amostras da cerveja artesanal analisadas apresentaram valores de pH dentro dos valores pré-estabelecidos. Os valores de acidez total encontrada nas cervejas pode ser considerado um fator de contaminação bacteriana, mas não é um teste efetivo para afirmar tal fato. O nível de acidez total do produto, pode ocorrer a partir da contaminação do líquido, por microrganismos, durante a sua produção (ALMEIDA e BELO, 2017).

Tabela 1: Valores de pH e Acidez Total

Amostras	рН	Acidez Total (Meq.L ⁻¹)	
Industrial	4,45	27,374	
Artesanal	4,17	21,846	

Fonte: Dados da pesquisa, 2019.

Os valores de densidade estão abaixo e o teor alcoólico acima do limite estabelecido na Lei 6.871/2009 conforme observa-se na Tabela 2. Indica, assim, uma cerveja com maior porcentagem de álcool.

Tabela 2: Valores de Densidade e Teor Alcoólico

1 400 14 21 1 410 100 40 20 110 144 40 0 1 00 1 7 110 00 110 0		
Amostras	Densidade (g.mL ⁻¹)	Teor Alcóolico (% m/m)
Industrial	0,98997	5,80
Artesanal	0,99085	5,70

Fonte: Dados da pesquisa, 2019

A Tabela 3 contém os resultados obtidos nas análises de extrato seco empregando duas metodologias distintas. Os valores obtidos pelos dois métodos foram muito discrepantes. Na primeira análise a porcentagem de extrato seco dos dois tipos de cerveja estão conforme prevê a lei com valores entre 2% e 7%. Já no segundo método a cerveja artesanal apresentou um alto valor, possivelmente por ser uma cerveja mais encorpada, o que forneceu um extrato mais denso.

Tabela 3: Valores de Extrato Seco

Amostras	Extrato Seco medido por massa (% m/m)	Extrato Seco medido por conversão da densidade (% m/m)	
Industrial	4,93	3,10	
Artesanal	3,83	<10,00*	

Fonte: Dados da pesquisa, 2019 *Resultado inconclusivo necessita repetição

Congresso de Interdisciplinaridade do Noroeste Fluminense

Para o cálculo do GS e GF foram utilizados os valores de extrato seco obtidos pelo método de medição por massa. Os valores de grau de fermentação acima de 60 indicam que a cerveja é do tipo de alta fermentação. Vejamos a Tabela 4.

Tabela 4: Valores de Grau Sacarométrico e Grau de Fermentação

Amostras	Grau Sacarométrico	Grau de Fermentação
Industrial	15,93	69,05
Artesanal	14,72	73,98

Fonte: Dados da pesquisa, 2019

Conclusão

Análises físico-químicas de alimentos se mostram de suma importância, principalmente quando pensamos na correspondência de rotulagens e seus parâmetros já pré-estabelecidos por lei.

Até o momento, de acordo com as análises já obtidas, as cervejas artesanais se mostraram dentro dos padrões de produção para pH e extrato seco obtido pelo método da medida de massa. Já o valor de extrato seco obtido pelo método da conversão da densidade encontra-se fora dos padrões, assim como a densidade e o teor alcoólico. As cervejas comerciais tiveram pequenas divergências com a norma padrão de pH, teor alcoólico e densidade. Os valores de extrato seco estão dentro dos padrões nos dois métodos utilizados.

Posteriormente, pretende-se analisar a densidade relativa, acidez, teor alcoólico, grau sacarométrico, grau de fermentação, extrato seco e pH da cerveja caseira. E ainda o açúcar redutor em maltose para os três tipos de cerveja: industrial, artesanal e caseira.

Agradecimentos

Agradecemos à assistente de laboratório Gilmara da Silva Rangel por toda ajuda e apoio nas análises laboratoriais.

Referências

ALMEIDA, D. S.D.; BELO, R.F.C. Análise físico-químicas de cervejas artesanais e industrias comercializadas em Sete Lagoas-MG. Revista Brasileira de Ciências da Vida, Vol. 5, n. 5, 2017

BRASIL. Decreto nº 6.871, de 04 de junho de 2009. Regulamenta a Lei nº 8.918, de 14 de julho de 1994, sobre a padronização, a classificação, o registro, a inspeção e a fiscalização da produção e do comércio de bebidas. Diário Oficial da União, Brasília, 04 de junho de 2009.

FERREIRA, A. S; BENKA, C. L. Produção de cerveja artesanal a partir de malte germinado pelo método convencional e tempo reduzido de germinação. Graduação – Universidade Tecnológica Federal do Paraná, Francisco Beltrão, 2014.

MORI, C; MINELLA, E. Aspectos econômicos e conjunturais da cultura da cevada. Embrapa trigo documentos online. N. 139, p.28. html, 2012.

INSTITUTO ADOLF LUTZ- IAL, Normas Analiticas do Instituto Adolf Lutz, Metodos físicos e químicos para análise de alimentos. 4o ed., v. 1, 2008.